Eakf-cmaq: Development and Initial Evaluation of an Ensemble Adjustment Kalman Filter Based Data Assimilation for Co
نویسندگان
چکیده
An integrated approach to modeling atmospheric chemistry with trace gas data assimilation is a relatively new focus of the atmospheric chemistry modeling community. It is expected that the predictive capability of CTMs can be significantly improved by assimilating measurements of key trace gases from satellite-based platforms and surface monitors. Ensemble adjustment Kalman filter (EAKF) methods are simple to implement, don’t need adjoints and backward integration, and are capable of handling non-Gaussian model errors. These factors have led to the adoption of EAKF methods for weather and climate simulations. Additionally, EAKF provides a measure of error resulting from the assimilation. We have combined EAKF data assimilation with a single-tracer version of CMAQ. The Data Assimilation Research Testbed (DART), developed by NCAR, was used to create an EAKF enabled CMAQ for assimilating CO. DART provides a modular environment that can integrate dynamical models with various assimilation techniques. Specifically, we ran CMAQ in ensemble adjustment Kalman filter mode to assimilate both synthetic and real observations of CO for the period of June 2001. We argue that it is a viable approach for further data assimilation experiments and potentially for air quality forecasting.
منابع مشابه
Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model
The background error covariance (correlation) between model state variables is of central importance for implementing data assimilation and understanding model dynamics. Traditional approaches for estimating the background error covariance involve many heuristic approximations, and often the estimated covariance is flow-independent, i.e. only reflecting statistics of the climatological backgrou...
متن کاملData assimilation and driver estimation for the Global Ionosphere–Thermosphere Model using the Ensemble Adjustment Kalman Filter
This paper proposes a differential inflation scheme and applies this technique to driver estimation for the Global Ionosphere–Thermosphere Model (GITM) using the Ensemble Adjustment Kalman Filter (EAKF), which is a part of the Data Assimilation Research Testbed (DART). Driver estimation using EAKF is first demonstrated on a linear example and then applied to GITM. The Challenging Minisatellite ...
متن کاملInitialization of an ENSO Forecast System Using a Parallelized Ensemble Filter
As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, a...
متن کاملMultiple time level adjustment for data assimilation
A B S T R A C T Time-stepping schemes in ocean–atmosphere models can involve multiple time levels. Traditional data assimilation implementation considers only the adjustment of the current state using observations available, i.e. the one time level adjustment. However, one time level adjustment introduces an inconsistency between the adjusted and unadjusted states into the model time integratio...
متن کاملChemical Data Assimilation—An Overview ‡
Chemical data assimilation is the process by which models use measurements to produce an optimal representation of the chemical composition of the atmosphere. Leveraging advances in algorithms and increases in the available computational power, the integration of numerical predictions and observations has started to play an important role in air quality modeling. This paper gives an overview of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006